QOS-AWARE ENERGY-EFFICIENT ALGORITHMS FOR ETHERNET LINK AGGREGATES IN SOFTWARE-DEFINED NETWORKS

Pablo Fondo Ferreiro Miguel Rodríguez Pérez Manuel Fernández Veiga September 15, 2018

atlanTTic research center for Telecommunication Technologies

CONTEXT

CONTEXT

Previous work on Aggregates of Energy Efficient Ethernet Links

Straightforward Solution Power off unused links

- Slow response time
- What about half used links?

Normalized Energy Usage (%) 80 • Formally IEEE 802.3az. 60 • Low Power Idle (LPI) state. 40 • Sleeping and waking up is not 20 instantaneous. EEE Link 0 0.01 0.001 0.1 1 Load Low Power Mode \sim Refreshing Refreshing Waking up Sleeping Active Active Quiet Quiet Quiet $\overrightarrow{t_{\mathrm{r}}}$ $\overset{<>}{t_{\rm r}}$ $t_{\rm w}$ $t_{\rm s}$

100

Figure 1: Energy-Efficient Ethernet model. Retrieved from [1].

Goal

Goal

Goal

Goal

Goal Minimize energy consumption in bundles of EEE links leveraging SDN.

Theoritical solution

Presented in [2], provides a

- Packet level algorithm
- Assumes real time access to individual occupation of each output port

SDN Solution

- Needs flow level operation
- Cannot take real-time decisions based on queue occupation
- Will use ONOS for portability

SDN ALGORITHM

SDN APPLICATION

Main Tasks

- Flow identification
- Flow characterization
- Port allocation

Challenge Which fields of the packets will identify our flows?

- We need:
 - Enough flows to distribute them along the bundle.
 - Few flows to keep flow tables small.
 - Flows with predictable demand.
- Two alternatives: Flow tagging vs field matching.
- We will aggregate IP flows:
 - MAC flows can be insufficient (e.g., transit networks).
 - Transport flows would be excessive.

FLOW RATE ESTIMATION

Figure 2: Average error in the estimation of the flow rate for different periods.

Use rate of previous interval with sampling rate around 0.2 s

In essence, a bin packing problem.

Heuristics

Greedy Corresponds to *first fit decreasing*. A flow level water-filling.

Bounded Greedy Variation to reduce loses:

Maximum usable capacity of a link: $1 - \frac{bound}{|flows|}$

Conservative • Balanced distribution among needed ports.

- Safety margin to further avoid losses.
- Note: Energy consumption raises very rapidly with traffic load.

CONSERVATIVE ALGORITHM

Behavior

- Determines the number of needed links
- Distributed flows evenly among the links

CONSERVATIVE ALGORITHM

Behavior

- Determines the number of needed links
- Distributed flows evenly among the links

Basis EEE energy usage rises rapidly with load.

CONSERVATIVE ALGORITHM

Behavior

- Determines the number of needed links
- Distributed flows evenly among the links

Basis EEE energy usage rises rapidly with load.

- Topology: Two switches connected by 5 EEE interfaces 10 GBASE-T.
- We have used real traffic traces retrieved from CAIDA [3].
- Baseline: Equitable algorithm.

- Metrics:
 - Energy consumption
 - Packet losses
 - Packet delay

RESULTS: ENERGY CONSUMPTION

Figure 3: Normalized energy consumption (buffer = 10000 packets).

• Theoretical bound for the consumption of the 32.5 Gbit/s: 78.5 %.

RESULTS: PACKET LOSSES

Figure 4: Packet loss percentage (sampling period = 0.5 seconds).

RESULTS: PACKET DELAY

Figure 5: Average per packet delay (buffer = 10000 packets).

QOS-AWARE ALGORITHMS

Goal

Provide low-latency service while reducing energy consumption.

- The previous algorithms manage to reduce energy consumption.
- However, they increase the delay of the packets.
- We consider now the QoS latency requirements of the flows.
- Two types of traffic:
 - Best-effort.
 - Low-latency.
- Modifications to the previous algorithms.

SOLUTIONS

Spare Port

- Apply energy-efficient algorithm to best-effort flows.
- 2. Low-latency flows are allocated to the most empty port.

Two Queues

- 1. Apply energy-efficient algorithm to all the flows.
- 2. Low-latency flows are allocated to the high-priority queue of the assigned ports.

Figure 6: Spare Port.

Figure 7: Two Queues.

- Same topology: 5-link bundle of 10 GBASE-T EEE interfaces.
- Real traces for best-effort traffic.
- Synthetic traffic for low-latency packets.
- Baseline: Conservative algorithm.
- Parameters:
 - Buffer = 10 000 packets.
 - Sampling period = 0.5 seconds.
- Metrics:
 - Delay of low-latency packets.
 - Delay of best-effort packets.
 - Energy consumption.

RESULTS: DELAY OF LOW-LATENCY PACKETS

Figure 8: Average delay of low-latency packets.

RESULTS: DELAY OF BEST-EFFORT PACKETS

Figure 9: Average delay of best-effort packets (32.5 Gbit/s trace).

RESULTS: ENERGY CONSUMPTION

Figure 10: Normalized energy consumption (32.5 Gbit/s trace).

CONCLUSIONS

CONCLUSIONS

- SDN can be leveraged to implement energy saving algorithms
- Results match theoretical model
- Provided low latency service based on QoS requirements

Future work

- Reuse edge allocations for inner switches.
- Reduce control plane traffic (e.g., minimize flow re-allocations).

THANK YOU FOR LISTENING! EMAIL: MIGUEL@DET.UVIGO.ES

- S. Herrería-Alonso, M. Rodríguez-Pérez, M. Fernández-Veiga, and C. López-García, "How efficient is energy-efficient ethernet?" in Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2011 3rd International Congress on. IEEE, 2011, pp. 1–7.
- M. Rodríguez Pérez, M. Fernández Veiga, S. Herrería Alonso, M. Hmila, and
 C. López García, "Optimum Traffic Allocation in Bundled Energy-Efficient Ethernet Links," IEEE Syst. J., vol. 12, no. 1, pp. 593–603, Mar. 2018.
- "The CAIDA UCSD Anonymized Internet Traces 2016 2016/04/06 13:03:00 UTC."
 [Online]. Available: http://www.caida.org/data/passive/passive_2016_dataset.xml