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Context



Context

Previous work on Aggregates of Energy Efficient Ethernet Links

Straightforward Solution
Power off unused links

• Slow response time
• What about half used links?
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EEE Links

• Formally IEEE 802.3az.
• Low Power Idle (LPI) state.
• Sleeping and waking up is not
instantaneous.
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Figure 1: Energy-Efficient Ethernet model. Retrieved from [1].
3



Problem statement

Goal
Minimize energy consumption in bundles of EEE links leveraging SDN.
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Problem statement

Goal
Minimize energy consumption in bundles of EEE links leveraging SDN.

Theoritical solution
Presented in [2], provides a

• Packet level algorithm
• Assumes real time access to individual occupation of each output port

SDN Solution

• Needs flow level operation
• Cannot take real-time decisions based on queue occupation
• Will use ONOS for portability
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SDN Algorithm



SDN Application

Main Tasks

• Flow identification
• Flow characterization
• Port allocation
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Flow definition

Challenge
Which fields of the packets will identify our flows?

• We need:
• Enough flows to distribute them along the bundle.
• Few flows to keep flow tables small.
• Flows with predictable demand.

• Two alternatives: Flow tagging vs field matching.
• We will aggregate IP flows:

• MAC flows can be insufficient (e.g., transit networks).
• Transport flows would be excessive.
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Flow rate estimation
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Figure 2: Average error in the estimation of the flow rate for different periods.
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Port Allocation

In essence, a bin packing problem.

Heuristics

Greedy Corresponds to first fit decreasing. A flow level water-filling.
Bounded Greedy Variation to reduce loses:

Maximum usable capacity of a link: 1 − 𝑏𝑜𝑢𝑛𝑑|𝑓𝑙𝑜𝑤𝑠|
Conservative • Balanced distribution among needed ports.

• Safety margin to further avoid losses.
• Note: Energy consumption raises very rapidly with traffic load.
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Conservative Algorithm

Behavior

• Determines the number of needed links
• Distributed flows evenly among the links

Basis
EEE energy usage rises rapidly with load.
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Experimental setup

• Topology: Two switches connected by 5 EEE interfaces 10GBASE-T.
• We have used real traffic traces retrieved from CAIDA [3].
• Baseline: Equitable algorithm.

• Metrics:
• Energy consumption
• Packet losses
• Packet delay
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Results: Energy consumption
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Figure 3: Normalized energy consumption (buffer = 10000 packets).

• Theoretical bound for the consumption of the 32.5 Gbit/s: 78.5%.
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Results: Packet losses

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10  100  1000  10000  100000

p
a
ck

e
t 

lo
ss

 (
%

)

buffer size(packets)

Greedy
Bounded-Greedy

Conservative
Equitable

(a) 32.5 Gbit/s trace.  0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

6.5 13.0 19.5 26.0 32.5

p
a
ck

e
t 

lo
ss

 (
%

)

rate (Gbps)

Greedy
Bounded-Greedy

Conservative
Equitable

(b) buffer = 10000 packets.
Figure 4: Packet loss percentage (sampling period = 0.5 seconds).
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Results: Packet delay
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Figure 5: Average per packet delay (buffer = 10000 packets).
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QoS-aware algorithms



Problem statement

Goal
Provide low-latency service while reducing energy consumption.

• The previous algorithms manage to reduce energy consumption.
• However, they increase the delay of the packets.
• We consider now the QoS latency requirements of the flows.
• Two types of traffic:

• Best-effort.
• Low-latency.

• Modifications to the previous algorithms.
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Solutions

Spare Port

1. Apply energy-efficient algorithm to
best-effort flows.

2. Low-latency flows are allocated to the most
empty port.
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Figure 6: Spare Port.

Two Queues

1. Apply energy-efficient algorithm to all the
flows.

2. Low-latency flows are allocated to the
high-priority queue of the assigned ports.
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low−priority queue

high−priority queue
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Figure 7: Two Queues. 17



Simulations

• Same topology: 5-link bundle of 10 GBASE-T EEE interfaces.
• Real traces for best-effort traffic.
• Synthetic traffic for low-latency packets.
• Baseline: Conservative algorithm.
• Parameters:

• Buffer = 10 000packets.
• Sampling period = 0.5 seconds.

• Metrics:
• Delay of low-latency packets.
• Delay of best-effort packets.
• Energy consumption.
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Results: Delay of low-latency packets
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Figure 8: Average delay of low-latency packets.
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Results: Delay of best-effort packets
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Figure 9: Average delay of best-effort packets (32.5 Gbit/s trace). 20



Results: Energy consumption
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Conclusions



Conclusions

• SDN can be leveraged to implement energy saving algorithms
• Results match theoretical model
• Provided low latency service based on QoS requirements

Future work

• Reuse edge allocations for inner switches.
• Reduce control plane traffic (e.g., minimize flow re-allocations).
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Thank you for listening!
Email: miguel@det.uvigo.es
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